Chatgpt Apps
This repository is a minimal EdgeOne Pages project that shows how to build an MCP server compatible with the [OpenAI Apps SDK](https://developers.openai.com/apps-sdk) using edge functions
| Framework | Next.js |
| Use Case | Pages Functions,AI |
ChatGPT Apps SDK EdgeOne Pages Starter
This repository is a minimal EdgeOne Pages project that shows how to build an MCP server compatible with the OpenAI Apps SDK using Next.js and edge functions.
Overview

The project demonstrates how to host an MCP server with Tencent Cloud EdgeOne Pages + Functions using Next.js. The MCP server exposes tools to ChatGPT and renders widgets with structured content.
Tech Stack
- Next.js 15: React framework with App Router
- Hono: Fast, lightweight web framework for EdgeOne Functions
- MCP SDK: Model Context Protocol implementation
- Tailwind CSS: Utility-first CSS framework
- TypeScript: Type-safe development
Capabilities
- MCP server: A serverless
onRequesthandler built on EdgeOne Functions using Hono - Widget support: The
hello_stattool renders dynamic widgets with structured content - CORS support: Built-in logic keeps the server compatible with ChatGPT iframes and browser debugging
- Next.js frontend: Modern React-based UI with Tailwind CSS styling
Key files
functions/mcp/index.ts: Implements MCP JSON-RPC, registers thehello_stattool, and handles widget renderingfunctions/httpTransport.ts: Custom HTTP transport for MCP serverapp/page.tsx: Next.js landing page that explains the projectapp/layout.tsx: Root layout with global stylesapp/globals.css: Tailwind CSS configuration and global stylesedgeone.json: EdgeOne Pages configuration with CORS headers
Quick start
1. Deploy to EdgeOne Pages
- Click the button above for one-click deployment.
- After provisioning, the EdgeOne console assigns a domain that hosts both the Next.js app and the MCP endpoint.
Once deployment finishes, the Next.js app is served from the root path and functions/mcp/index.ts is automatically mapped to /mcp.
Connect from ChatGPT
- Ensure your account has ChatGPT Apps developer access.
- In ChatGPT, open Settings → Connectors → Create.
- Add the EdgeOne Pages deployment URL as the MCP server, for example:
https://<your-project-url>/mcp - Save the configuration, then call the
hello_stattool in a conversation to render a stat widget with your name.
MCP request flow
- ChatGPT calls
/mcpvia the MCP protocol, triggering theinitializeandtools/listhandshake. - When a user invokes
hello_stat, the server returns structured content with title/value/description. - The widget template is fetched from the Next.js app root and rendered in ChatGPT with the structured data.
- Errors are returned in a structured format so ChatGPT and developers can debug quickly.
Project structure
examples/chatgpt-apps-edgeone-pages/
├── app/
│ ├── layout.tsx # Next.js root layout
│ ├── page.tsx # Landing page
│ └── globals.css # Global styles with Tailwind
├── functions/
│ ├── mcp/
│ │ ├── index.ts # MCP server with hello_stat tool
│ │ └── [[default]].ts # Dynamic route handler
│ └── httpTransport.ts # Custom HTTP transport for MCP
├── edgeone.json # EdgeOne configuration
├── next.config.js # Next.js configuration
└── tailwind.config.js # Tailwind CSS configuration
Further reading
- OpenAI Apps SDK docs
- Model Context Protocol spec
- EdgeOne Pages & Functions guide
- ChatGPT connector creation guide
To extend the setup, continue evolving the MCP logic in functions/mcp/index.ts. EdgeOne Pages scales compute as needed.